ON THE MAXIMAL NUMBER OF THREE-TERM ARITHMETIC PROGRESSIONS IN SUBSETS OF Z/pZ

نویسندگان

  • BEN GREEN
  • OLOF SISASK
چکیده

Let α ∈ [0, 1] be a real number. Ernie Croot [3] showed that the quantity max A⊆Z/pZ |A|=⌊αp⌋ #(3-term arithmetic progressions in A) p tends to a limit as p → ∞ though primes. Writing c(α) for this limit, we show that c(α) = α/2 provided that α is smaller than some absolute constant. In fact we prove rather more, establishing a structure theorem for sets having the maximal number of 3-term progressions amongst all subsets of Z/pZ of cardinality m, provided that m < cp.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Minimal Number of Three-Term Arithmetic Progressions Modulo a Prime Converges to a Limit

Given an integer r ≥ 2 and a number υ ∈ (0, 1], consider the collection of all subsets of Z/rZ having at least υr elements. Among the sets in this collection, suppose S is any one having the minimal number of three-term arithmetic progressions, where in our terminology a three-term arithmetic progression is a triple (x, y, z) ∈ S3 satisfying x + y ≡ 2z (mod r). Note that this includes trivial p...

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi&#039;{c} and Radoiv{c}i&#039;{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

The Minimal Number of Three-Term Arithmetic Progressions Modulo a Prime Converges to a Limit

Given an integer q ≥ 2 and a number θ ∈ (0, 1], consider the collection of all subsets of Zq := Z/qZ having at least θq elements. Among the sets in this collection, suppose S is any one having the minimal number of three-term arithmetic progressions, where in our terminology a three-term arithmetic progression is a triple (x, y, z) ∈ S3 satisfying x + y ≡ 2z (mod q). Note that this includes tri...

متن کامل

Permutations Destroying Arithmetic Structure

Given a linear form C1X1 + · · · + CnXn, with coefficients in the integers, we characterize exactly the countably infinite abelian groups G for which there exists a permutation f that maps all solutions (α1, . . . , αn) ∈ Gn (with the αi not all equal) to the equation C1X1+ · · ·+CnXn = 0 to non-solutions. This generalises a result of Hegarty about permutations of an abelian group avoiding arit...

متن کامل

On a Generalization of a Theorem by Vosper

Let S, T be subsets of Z/pZ with min{|S|, |T |} > 1. The Cauchy–Davenport theorem states that |S + T | ≥ min{p, |S| + |T | − 1}. A theorem by Vosper characterizes the critical pair in the above inequality. We prove the following generalization of Vosper’s theorem. If |S + T | ≤ min{p− 2, |S|+ |T |+m}, 2 ≤ |S|, |T |, and |S| ≤ p− ( m+4 2 ) , then S is a union of at most m+ 2 arithmetic progressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008